Second-Order Regression-Based MR Image Upsampling
نویسندگان
چکیده
The spatial resolution of magnetic resonance imaging (MRI) is often limited due to several reasons, including a short data acquisition time. Several advanced interpolation-based image upsampling algorithms have been developed to increase the resolution of MR images. These methods estimate the voxel intensity in a high-resolution (HR) image by a weighted combination of voxels in the original low-resolution (LR) MR image. As these methods fall into the zero-order point estimation framework, they only include a local constant approximation of the image voxel and hence cannot fully represent the underlying image structure(s). To this end, we extend the existing zero-order point estimation to higher orders of regression, allowing us to approximate a mapping function between local LR-HR image patches by a polynomial function. Extensive experiments on open-access MR image datasets and actual clinical MR images demonstrate that our algorithm can maintain sharp edges and preserve fine details, while the current state-of-the-art algorithms remain prone to some visual artifacts such as blurring and staircasing artifacts.
منابع مشابه
Light-Weight Single Image Super-Resolution via Pattern-wise Regression Function
We propose a novel upsampling approach that is suitable for hardware implementation. Compared with past super-resolution (SR) upsampling methods (e.g. example based upsampling), structure of our upsampling approach is very simple. Strategy of our approach is mainly 2 terms; off-line training term and realtime upscaling term. (i)During training term, grouping lowresolution (LR) high-resolution (...
متن کاملImage and Video Super-resolution via Spatially Adaptive Block-matching Filtering
In our recent work [6], we proposed an algorithm for image upsampling based on alternation of two procedures: spatially adaptive Þltering in image domain and projection on the observationconstrained subspace in a wavelet domain. The nonlocal BlockMatching 3-D (BM3D) Þlter was used to suppress ringing and reconstruct missing detail coefÞcients. Here we generalize this method in two aspects. Firs...
متن کاملDownsampling dependent upsampling of images
Downsampling an image results in the loss of image information that cannot be recovered with upsampling. We demonstrate that the particular combination of downsampling and upsampling methods used can significantly impact the reconstructed image quality, and then we propose a technique to identify patterns associated with different downsampling methods in order to select the appropriate upsampli...
متن کاملEvaluation of Interpolation Effects on Upsampling and Accuracy of Cost Functions-Based Optimized Automatic Image Registration
Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techn...
متن کاملConvolutional Neural Pyramid for Image Processing
We propose a principled convolutional neural pyramid (CNP) framework for general low-level vision and image processing tasks. It is based on the essential finding that many applications require large receptive fields for structure understanding. But corresponding neural networks for regression either stack many layers or apply large kernels to achieve it, which is computationally very costly. O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017